Tag Archives: Indian Science Discovery

INTERNATIONAL: SCIENCE – RESEARCH & DISCOVERY: Living walls: Indian student Prantar Tamuli develops carbon capturing building material in University College London(UCL)

Tamuli developed the C-ELM under the guidance of research supervisors during his MSc in Bio-Integrated Design, even innovating new methods to culture cyanobacteria at home during the Covid-19 lockdown in London.

An Indian student at University College London (UCL) has developed an innovative construction biomaterial that utilises living microorganisms to remove carbon dioxide from the atmosphere, potentially revolutionising the building industry’s carbon footprint.

Prantar Tamuli, a Master’s student in UCL’s Biochemical Engineering Department, recently introduced this material as part of an art installation at St Andrews Botanic Garden in Scotland.

The biomaterial, known as a cyanobacterial engineered living material (C-ELM), incorporates living cyanobacteria within translucent panels that can be mounted on the interior walls of buildings. As the microorganisms grow through photosynthesis, they capture carbon dioxide from the air.

“My goal with developing C-ELM is to shift the construction of our future human habitats from being a significant carbon-emitting activity to one that actively sequesters carbon,” Tamuli was quoted as saying by news agency PTI.

Through a process called biomineralisation, the captured CO2 is converted into calcium carbonate, effectively trapping the carbon.

A kilogram of C-ELM can capture up to 350g of carbon dioxide, while the same amount of traditional concrete would emit approximately 500g of CO2. A wall covered with 150 square metres of these panels could sequester about one tonne of carbon dioxide.

“The potential of this biomaterial is immense. If scaled up and widely implemented, it could significantly reduce the construction industry’s carbon footprint,” said Professor Marcos Cruz of UCL’s Bartlett School of Architecture and co-director of the Bio-Integrated Design Programme, according to the report by PTI.

Tamuli developed the C-ELM under the guidance of research supervisors during his MSc in Bio-Integrated Design, even innovating new methods to culture cyanobacteria at home during the Covid-19 lockdown in London.

Dr Brenda Parker, co-director of the Bio-Integrated Design Programme, added, “By breaking down traditional disciplinary barriers, we can enable breakthroughs like these. Biotechnology is now in a position to transform sustainable design and construction,” PTI reported.

Inspired by studying stromatolites—ancient structures formed by algal mats—Tamuli focused on the cyanobacteria species *Kamptonema animale*, which grows in long strands that easily bind to surrounding materials within the panels. The calcium carbonate produced by the cyanobacteria strengthens and reinforces the panels.

These panels offer multiple benefits for buildings, including being lightweight, sound-absorbing, translucent enough to allow light to pass through, and thermally insulating to improve energy efficiency.

The first panels were publicly displayed inside the “Bioscope” pavilion at St Andrews Botanic Garden, showcasing low-carbon, nature-inspired construction methods designed by the collective Studio Biocene. A patent for C-ELM technology has been filed by UCL’s commercialisation company, UCL Business.

source/content: indianexpress.com (headline edited)